
Front propagation up a reaction rate gradient

Elisheva Cohen and David A. Kessler
Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel

Herbert Levine
Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla,

California 92093-0319, USA
�Received 28 August 2005; published 29 December 2005�

We expand on a previous study of fronts in finite particle number reaction-diffusion systems in the presence
of a reaction rate gradient in the direction of motion of the front. We study the system via reaction-diffusion
equations, using the expedient of a cutoff in the reaction rate below some critical density to capture the
essential role of fluctuations in the system. For large density, the velocity is large, which allows for an
approximate analytic treatment. We derive an analytic approximation for the dependence of the front velocity
on bulk particle density, showing that the velocity indeed diverges in the infinite density limit. The form in
which diffusion is implemented, namely nearest-neighbor hopping on a lattice, is seen to have an essential
impact on the nature of the divergence.
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I. INTRODUCTION

The propagation of fronts connecting different macro-
scopic states is a common occurrence in many nonequilib-
rium systems �1�. Familiar examples range from solidifica-
tion �2� to chemical reaction dynamics such as flames �3� and
to the spatial spread of infections �4� through a susceptible
population. Previous work by many authors has shown that a
useful way to classify such fronts is via the stability proper-
ties of the state being invaded. In fact, surprising differences,
with regard to the selection of the speed of propagation �5�,
the rate of approach to that speed �6–8�, the sensitivity to
finite-particle number fluctuations �6,9�, and the stability to
two-dimensional �2D� undulations �10�, exist between fronts
that propagate into metastable versus linearly unstable states.

In a previous work �11�, we addressed the question of the
dynamics of a different type of front propagating into a lin-
early unstable state, that which exists in a system containing
a reaction-rate gradient in the direction of front motion �12�.
Our starting point was a simple infection model A+B→2A
on a 1D lattice �with spacing a and no restriction on multiple
occupancy� with equal A and B hopping rates �4�; this pro-
cess leads in the mean-field limit to a spatially discrete ver-
sion of the well-known Fisher equation �13�

�̇i = r�i�1 − �i� +
D

a2 ��i+1 − 2�i + �i−1� . �1�

Here propagation is into the linearly unstable �=0 state and
� is just the number of A particles at a site, normalized by N,
the average number of particles per site. We then took the
reaction rate to be a linear function of space, increasing in
the direction of propagation. This type of gradient would be
a natural consequence of spatial inhomogeneity, or could be
imposed via a temperature gradient in a chemical reaction
analog. Also, this type of system arises naturally in models
of Darwinian evolution �14,15� �where fitness x is the inde-
pendent variable; the birth rate, akin to the reaction rate here,

is proportional to fitness�. The naive equation describing
such a model is the Fisher equation �1� with a reaction
strength r=ra�x� varying linearly in space �16�,

ra�x� = r0 + �x . �2�

This model gives rise to an accelerating front. We also intro-
duced a quasistatic version of the model �17�, wherein the
reaction rate function moves along with the front:

rq�x� = max�rmin, r̃0 + ��x − xf�t��� , �3�

with xf the instantaneous front position, the precise definition
of which we will discuss later. The minimum reaction rate
rmin is introduced so as to stabilize the bulk �=1 state, and
plays no essential role in the following. This quasistatic
problem should lead to a translation-invariant front with
fixed speed vq�r̃0 ,��. Although important on its own �in par-
ticular, it is what arises in the evolution model described
above�, one might also try to view the quasistatic problem as
a zeroth-order approximation to the original model �the ab-
solute gradient case�, where by ignoring the acceleration, one
obtains an adiabatic approximation to the velocity
v�t ;r0 ,���vq(r̃0�t� ,�) with r̃0�t�=r0+�xf�t�. In both mod-
els, the reaction rate gradient was seen �11� to enhance tre-
mendously the role of fluctuations, to the extent that the na-
ive treatment via a reaction-diffusion, or mean-field,
equation gave rise to “irregular” behavior completely at odds
with the original stochastic model. In particular, the reaction-
diffusion system exhibited an extreme sensitivity to initial
conditions not present in the stochastic model. Furthermore,
the quasistatic version of the reaction-diffusion system ex-
hibited a front which accelerated without end, whereas the
stochastic version of the model always achieved an
asymptotic constant velocity steady state.

To get some insight into the stochastic model, in both its
absolute and quasistatic forms, we employed a heuristic ap-
proach in which we mimic the leading-order effect of finite
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population number fluctuations by introducing a cutoff in the
mean-field equation �MFE� �14,18,19�. This cutoff replaces
r�x� by zero if the density � falls below k /N for some O�1�
constant k; this change in the reaction term prevents the lead-
ing edge from spreading too far, too fast. This idea has
proven its reliability in the Fisher system with constant re-
action rate where it correctly predicts the surprisingly large
effect of finite N on the velocity �6� and stability �10� of the
front. Simulation results �11� showed that the cutoff MFE
does a quantitatively accurate job of tracking the actual front
dynamics. We then used the cutoff MFE to study the front
velocity as a function of N. This was done both for the ab-
solute gradient model, considering the velocity at some given
front position, and for the quasistatic model. From the data,
we concluded that both models exhibit velocities which in-
crease, evidently without bound, as a function of N. This is
of course radically different than the situation in the absence
of the gradient, where the velocity has a finite limit as N
→�. Thus the cutoff treatment succeeded in showing why
the long-time dynamics of the stochastic model is not at all
correctly described by the naive reaction-diffusion system. In
addition, the cutoff theory had the physically reasonable
property, again in accord with the stochastic system, that at
small enough N, the velocity could be approximated by just
taking a cutoff version of the usual Fisher equation result for
a fixed reaction rate rF=r0+�x̄, i.e., neglecting the reaction-
rate gradient across the front. This is so because the effective
interfacial width, the distance over which the particle density
drops from its bulk value O�1� to its cutoff value O�1/N�,
scales as log N; hence one can neglect the gradient if
��log N� /r0 is small. The naive quasistatic reaction-diffusion
system, however, due to its interface width continually in-
creasing with time, always feels the reaction rate gradient
and never is in this adiabatic regime. In the absolute gradient
case, on the other hand, the ever increasing reaction rate at
the front position renders the gradient less and less important
as the front advances.

Given the highly unusual velocity results, an analytic
treatment of the cutoff system at large N is clearly worth-
while. At present, we can only perform this analysis for the
quasistatic model, where the velocity approaches a steady-
state value at long times, so for the remainder of this work
we restrict ourselves to this case. A very telegraphic version
of the analysis was presented in Ref. �11�. The purpose of
this paper is to present this analysis in detail. The continuum
problem is treated first in Sec. II. A treatment of the depen-
dence of the velocity on the “base” reaction rate r0 is pre-
sented in the next section. In Sec. IV we redo the continuum
problem via a WKB treatment, developing the methods
which will prove necessary for the lattice problem. The lat-
tice problem is attacked in Sec. V, producing the controlling
�geometrical optics� WKB approximation, whose properties
are then investigated. The full leading order �physical optics�
WKB solution is obtained in Sec. VI. This is matched to the
solution past the cutoff in Sec. VII, completing the analysis
of the model. A summary and some concluding remarks then
follow.

II. CONTINUUM PROBLEM

As noted above, we study herein the steady-state motion
of fronts in the quasistatic version of our model. On the

lattice, the solution has the “Slepyan” traveling wave form
�20�:

�i�t� = ��t − ia/v� , �4�

where the field �i at each lattice site i has the same history,
shifted in time. The equation of motion then becomes a
differential-difference equation for �, which we write as a
function of the variable x�−vt:

0 =
D

a2 ���x + a� + ��x − a� − 2��x�� + v��

+ r�x��� − �2���� − 1/Ne� . �5�

The cutoff in the reaction rate sets is when the density drops
below some fraction k of one particle per site, so that �
�k /N�1/Ne. We found �11� that k=0.25 yields excellent
quantitative agreement with the stochastic model. In this
quasistatic model, the reaction rate is also only a function of
the comoving variable x:

r�x� = max�rmin,r0 + �x� , �6�

where we have chosen the origin of time such that the front
position xf, defined by �xf

=1/2, is located at i=0 at t=0.
This definition is the simplest one for the deterministic prob-
lem posed by the cutoff MFE; other conventions are more
convenient for simulation studies of the stochastic model
�11�, but this merely corresponds to a slight change of r0.

In the spatial continuum limit, a→0, this steady state be-
comes a standard differential equation:

0 = D�� + v�� + r�x��� − �2���� − 1/Ne� . �7�

In this section we treat this simpler problem, returning to the
lattice version in Sec. V.

We want to solve the problem for large Ne, where, as we
have noted, we expect the velocity to be large. If v is indeed
large, then it appears that the diffusion term is negligible in
comparison, and can be dropped. We will see that this is in
fact valid as long as x is not too large, including the entire
“bulk” region of the solution where � is O�1�. We then get

v�� 	 − r�x��� − �2���� − 1/Ne� . �8�

In the pre-cutoff region, x�xc wherein ��1/Ne �the solu-
tion is monotonically decreasing�, the solution satisfying
��0�=1/2 is given by

− ln
 �

1 − �
� = ��r0x + �x2/2�/v

rmin�x − xmin�/v + r0�xmin + �xmin
2 /2�/v ,

�9�

where the upper term is valid for x�xmin, and the lower term
is valid for x�xmin. xmin is the point where the minimum
reaction rate is reached, 1+r0�xmin=rmin. If we assume for
the moment that the solution is valid all the way up to xc,
then all we have to do is solve for x�xc and match. The
solution there is
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� =
1

Ne
e−v�x−xc�/D. �10�

To do the matching, it is enough to use the small � approxi-
mation of Eq. �9�, namely

� 	 e−�r0x+�x2/2�/v. �11�

The matching of � and �� /� at xc then gives

1

Ne
= e−�r0xc+�xc

2/2�/v,

v
D

=
r0 + �xc

v
, �12�

two equations for the two unknowns v and xc. For large Ne,
both of these are large and we obtain the approximate solu-
tion

ln Ne 	 �xc
2/�2v� ,

v2/D 	 �xc �13�

so that

v 	 �2D2� ln Ne�1/3,

xc 	 
4D

�
�1/3

�ln Ne�2/3. �14�

We can now check our assumption concerning the irrel-
evance of diffusion for x�xc. Using Eq. �11�, we find that

D��

v��
= D �r0 + �x�2/v2 + �/v

�r0 + �x� � . �15�

For x of order 1, this is of order 1 /v and is indeed small.
However, xc is large, of order v2, so that here the ratio is
order 1 and diffusion can no longer be ignored. However,
since the ratio is of order 1, and not large, the scaling given
by Eq. �14� is correct, just not the numerical coefficient.

To incorporate diffusion for x�xc, we can linearize the
equation since � is already small in this region. We get

0 = D�� + v�� + �r0 + �x�� . �16�

Up to a similarity transformation, this is the Airy equation,
with the general solution

� = e−vx/2DAAi
	 − x



� + BBi
	 − x



�� , �17�

where

	 �
v2/4D − r0

�
,


 � 
D

�
�1/3

. �18�

We need to match this to the diffusionless solution Eq. �11�
for 1�x�xc, where the arguments of the Airy functions are

large and positive. Doing this, we find that B must be set
equal to zero, since Bi��	−x� /
� decreases for increasing x
and so enhances the fast descent of the exponential factor.
The Ai term on the other hand increases with increasing x
and cancels out the fast exponential, leaving the desired slow
exponential of the bulk solution. Matching to the bulk solu-
tion in the region �v /��x�v
2 /D, assuming r0�v2 /4D,
we find

A 	 2���	/
�1/4e2/3�	/
�3/2
. �19�

We are now again at a position to perform the match at xc.
The matching equations are

1

Ne
= e−vxc/2DAAi
	 − xc



� ,

v
D

=
v

2D
+

Ai�
	 − xc



�


Ai
	 − xc



� . �20�

Examining the second of this set of equations, we see that
the second term on the left must be large, which we can
arrange if the denominator is small; i.e., Ai is close to its first
zero. To leading order in v, 	�v2 / �4D��1 and so xc		.
Then, to leading order, we get

ln Ne 	
v	

2D
−

2

3

	



�3/2

=
v3

24D2�
�21�

so that

v 	 �24D2� ln Ne�1/3 �22�

confirming that incorporating the diffusion just modifies the
prefactor. Plotting together in Fig. 1 the exact numerical so-
lution, obtained from a straightforward shooting solution of
Eq. �7�, with an appropriately small a �=0.006 25� and rq�x�
as the reaction term, with the numerical solution to our ana-
lytic matching formula, Eq. �20�, and our asymptotic scaling
solution, Eq. �22�, we see that our matching formula agrees
extremely well with the exact velocity. Even for the large
values of ln Ne considered here, however, the leading order
formula is not very impressive. The next order term can be
calculated and gives

v 	 2�D2��1/3��3 ln Ne�1/3 + �0�3 ln Ne�−1/3� , �23�

where �0=−2.3381 is the location of the first zero of the Airy
function. Thus although the correction does decrease with
Ne, it does so very slowly. This improved approximation is
also presented in Fig. 1, and does quite well.

III. DEPENDENCE ON r0

To the order considered, r0 has not entered into the calcu-
lated velocity. We can calculate the leading r0 dependence by
expanding Eq. �21� to quadratic order in r0:

ln Ne 	
v	

2D
−

2

3

	



�3/2

	
v3

24D2�
−

r0
2

2v�
�24�

which induces a correction �v to the velocity of
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�v 	
4D2r0

2

v3 �25�

so that v increases quadratically with r0 to leading order.
Note that the shift is small, of order 1 /v even for r0 of order
v. Note also that r0 cannot be taken to be of order v2, since
then diffusion is relevant in the bulk. In Fig. 2 a comparison
between formula �25� and numerical results are shown. The
initial quadratic dependence is clearly seen. For large enough
r0 our formula fails. Indeed for very large r0, the effect of the
reaction gradient is suppressed, and the velocity should ap-
proach that of the �cutoff� Fisher equation with rate r0 �6�,

v = 2�r0D
1 −
�2

ln2 Ne
� . �26�

IV. CONTINUUM PROBLEM, Á LA WKB

The fact that we could solve the linear problem exactly
obscures the fact that most of the structure of the problem
comes from the asymptotic properties of the solution. In fact,
we can get essentially everything we require via a WKB
treatment. Writing �=eS, we get, making the usual WKB
assumption, S�� �S��2,

DS�2 + vS� + �y = 0, �27�

where we have written y=x+r0 /� and the derivatives are
with respect to y. The conditions for validity of the WKB
assumption will be discussed below.

Equation �27� defines S� implicitly in terms of y. For
small y�v2 / ��D�, we get S�=−�y /v, so that S=S0

−�y2 / �2v�. Matching to the bulk solution as above gives
S0=r0

2 / �2v��	0, if we take r0 to be order 1. Now what is
critical, as we saw above, is the turning point, since beyond
this point S� turns complex, � starts to oscillate, and so hits
zero, which allows us to match to the post-cutoff solution
just before this vanishing. The turning point is given by the
discriminant condition, which we can write as

d

dS�
�DS�2 + vS� + �y� = 0 �28�

or

S*� = −
v

2D
. �29�

Solving for the turning point y* gives us y*=v2 / �4D�� which
is consistent with the solution given above in Sec. II, where
the turning point occurs where the argument of the Ai func-
tion is zero. However, we do not actually need the value of
the turning point, just that of S� there, namely S*�. Since, as
we verify later, the turning point is close to the zero of the
solution, the dominant contribution to the value of � is eS*.
This is given by

S* = �
0

y*

dyS� = �
0

S*�
dS�S�

dy

dS�
= �

0

S*�
dS�S��− �2DS� + v�/��

= −
v3

24D2�
. �30�

Note that we did not need an explicit expression for S��y�,
which is good, since in the lattice case we will not have such
an expression. This calculation is already enough to give us
the leading asymptotics, since to leading exponential order
��xc�=eS*, or S*=−ln Ne, exactly what we got above. The
origin of the correction lies in the fact that the zero of the
solution, which the matching condition forces to be very
close to xc, lies a small distance �though much larger than the
distance between the zero and xc� beyond the turning point,
namely −�0
, a result we need the Airy equation to derive.
The real part of S� is fixed at S*� beyond the turning point, so

FIG. 1. �Color online� Exact quasistatic velocity compared to
various approximations for the spatial continuum case, a→0, with
�=0.3, D=1, r0=1. The open squares indicate the exact velocity,
the dashed line the leading asymptotics, Eq. �22�, the filled circles
the corrected asymptotic formula Eq. �23�, and the solid line the
exact solution of the approximate matching condition, Eq. �20�.

FIG. 2. �Color online� Comparison of the predicted r0 depen-
dence, Eq. �25�, and numerical results for the spatial continuum
limit a→0, with �=0.1, D=1. Also included is the Fisher velocity,
Eq. �26�, where the graphs for the two Ne’s coincide on the scale of
the figure.
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S at the zero is S*+�0
v / �2D�, which we need to set equal to
−ln Ne. This gives us the correction derived above.

Before moving on, let us return to the question of the
validity of the WKB approximation, namely the condition
that S�� �S��2. For y�v2, S�	−�y /v, so the WKB approxi-
mation holds as long as y �v��1/2. For y�O�v2�, as long as
y is not to close to the turning point, S��O�v� whereas
S��O�1/v� and the WKB treatment is valid here as well.

V. LATTICE PROBLEM

Now we are in a position to return to our lattice problem,
Eq. �5�. As above, in the bulk diffusion is irrelevant and the
solution is the same as before. Close to the turning point, we
linearize and expand S�x±a� �even though we cannot expand
��x±a�� �15,21�, and the WKB equation is

0 =
4D

a2 sinh2�aS�/2� + vS� + �y . �31�

Already at this point, we get a nontrivial result. We can de-
dimensionalize this equation by introducing T=a / �S, z
=y /�, �=v / �a�� so that the equation reads

0 =
4D

va
sinh2�T�/2� + T� + z , �32�

where the derivative is now with respect to z. Thus S �i.e.,
ln Ne� scales like D / ��a3� times a function of the dimension-
less parameter va /D, so that the results for all a �for a given
k and D� should lie on a universal curve. Furthermore, we
see that a is a singular perturbation as far as the large veloc-
ity limit goes �15�, since no matter how small a is, the pa-
rameter va /D eventually goes to infinity.

Returning to Eq. �31�, the turning point is given by the
discriminant equation

0 =
2D

a
sinh�aS*�� + v �33�

which gives

S*� =
1

a
ln
�1 +

v2a2

4D2 −
va

2D
� . �34�

Again, we need to calculate the change in S from y=0 to the
turning point y*. This is given as above by

S* = �
0

S*�
dS�S�

dy

dS�

= �
0

S*�
dS�S�− 
2D

a
sinh�aS�� + v�� ��

= −
2D

�a2S*� cosh�aS*�� +
2D

�a3 sinh�aS*�� −
v�S*��

2

2�
.

�35�

This then is the leading order WKB answer. Again, to get the
correction, we need to examine the vicinity of the turning
point more closely. We write

��y� � eS*�y��y� . �36�

In the vicinity of the turning point, this removes the large
variation of � between lattice points, leaving us free to Tay-
lor expand the rest. Substituting this into Eq. �5�, we get

0 =
D

a2 �eaS*���y + a� + e−aS*���y − a� − 2��y�� + vS*���y�

+ v���y� + �y�

	
D

a2 �eaS*��� + a�� + a2��/2�

+ e−aS*��� − a�� + a2��/2� − 2�� + vS*�� + v�� + �y�

= D cosh�aS*���� + ��y − y*�� . �37�

Again, we get an Airy equation. This gives us a distance of
−�0
a from the turning point to the zero of � �which again is
very close to zc, see below�, where


a � ��/�D cosh�aS*����
−1/3 �38�

is the length scale of the Airy equation for the lattice prob-
lem. This gives us an additional contribution of −S*��0
a to S.
Again, the solution for the velocity is just ln Ne=−S, so that

ln Ne 	
1

�

2D

a2 S*� cosh�aS*�� −
2D

a3 sinh�aS*�� + v�S*��
2/2�+ �0S*�
 �

D cosh�aS*��
�−1/3

. �39�

In Fig. 3, we present data for a number of values of a,
ranging from 0 to 1, along with our analytic prediction. The
agreement is seen to be very good. We see that the effect of
the lattice is to increase the velocity, and that the effect is
stronger the larger N is.

Let us examine the various limits of our result, beginning
with the continuum limit, av /D�1. Then S*�=−v /2D, as

in the continuum calculation, so that aS*��1. Then, S*
=−�2D�S*��

3 /3+v�S*��
2 /2� /�=−v3 / �24D2��, also exactly as

in the continuum calculation. The correction term is
S*��0�� /D�−1/3, which also agrees.

Now, as we mentioned above, for any finite a, av /D
is eventually large for sufficiently large Ne. Then, S*�
=−ln�va /D� /a. This gives S*=−v / �a2���−ln�va /D�+1

FRONT PROPAGATION UP A REACTION RATE GRADIENT PHYSICAL REVIEW E 72, 066126 �2005�

066126-5



+ln2�va /D� /2�. Now, for very large va /D, S*	
−v ln2�va /D� / �2a2��. However, this is only valid for
ln�va /D�2. In fact, it is a reasonable �20%� approximation
only for ln�va /D� bigger than 10, so that v would be unrea-
sonably large. Thus a strict asymptotic expansion is of no use
whatsoever. Over the range 5�x�11, an excellent approxi-
mation of ln2�x� /2+1−ln�x� is x /7.4 �see Fig. 4�.

Thus, in the relevant range, S*	−v2 / �7.4a�D�. Thus,
while formally, to leading order

ln Ne 	 v/�2a2��ln2�va/D� , �40�

or equivalently

v 	 2a2� ln�Ne�/ln2�a3� ln�Ne�/D� , �41�

this is true only for astronomically large Ne. More useful,
though phenomenological, is

v 	 �7.4a�D ln Ne. �42�

Thus the velocity increases with �, D, and Ne. Including the
correction term, we get the effective approximation

v 	 �7.4a�D ln Ne

− 1.76�1/3D2/3�ln�Ne��−1/3ln�7.4a3� ln�Ne�/D� .

�43�

Figure 5 presents the case a=1. We see that for v’s bigger
than 4, the corrected approximation is excellent. The leading
order approximation, however, is poor even for ln�Ne� as
unreasonably large as 100. The simplified effective approxi-
mation Eq. �43� is as good as the full corrected approxima-
tion for this range of Ne. The extremely simple Eq. �42� is as
good as the leading order approximation.

In Fig. 6, we show the dependence on �, the gradient of
the reaction rate. We see that the rise in v is quite steep at
first, and then tapers off to a much slower rise. It should be
noted how much an effect the correction term has, especially
at larger �. Nowhere does the velocity look simply propor-
tional to �, as would naively appear from the leading order
calculation, Eq. �41�.

In Fig. 7, we show the dependence of v on the diffusion
constant D. Again, the rise in v is steep at small D, and
grows essentially linearly for large D. As v /D is a decreasing
function of D, for large D the continuum limit is eventually
valid. We see in fact that the continuum approximation, Eq.
�23�, works quite well over the entire range of D shown, for
this value of Ne.

VI. NEXT-ORDER WKB

To go further, we need to both improve our WKB solution
and to extend our solution to the region x�xc. Note that it is

FIG. 3. �Color online� Velocity vs ln�Ne� for lattice spacings a
=1 �open circle�, 0.5 �filled circle�, 0.25 �open square�, and 0 �filled
square�, from simulation with �=0.1, D=r0=1, together with the
analytic approximation Eq. �39� for the four cases.

FIG. 4. �Color online� Comparison of the function ln2�v� /2
−ln�v�+1 and the linear approximation v /7.4.

FIG. 5. �Color online� Velocity vs ln�Ne� for lattice spacing a
=1, �=0.1, D=r0=1 from simulation �open circles� together with
the various analytic approximations. The dashed curve labeled
“Leading Order” represents Eq. �35� and the solid curve labeled
“Correction” represents Eq. �39�. The dotted curve labeled “Effec-
tive” represents Eq. �43�.
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easy to check that we do not need to reconsider the diffu-
sionless solution in the bulk, as the first-order correction to
that solution is lower order �in terms of its ultimate effect on
the velocity� than the correction we derive here. We first
consider the next-order WKB solution, writing �=eS0+S1, and
getting the next-order equation

2D

a2 
aS1� sinh�aS0�� +
a2

2
S0� cosh�aS0��� + vS1� = 0 �44�

with the solution

S1 	 −
1

2
ln
 av

2D
+ sinh�aS0��� + C1 �45�

so that

� 	 �av/2D + sinh�aS0���
−1/2eC1+S0. �46�

The fact that S1 is only logarithmically large in v whereas S0
is of order v justifies the WKB approximation in the lattice
case, at least until y is too near the turning point, as always.

We have to match the solution to the bulk solution, which
is �ignoring from now on the r0 correction� approximately
e−�y2/2v. The matching area is defined by the requirement that
on the one hand diffusion be irrelevant, so that −S0�	�y /v
� ln v, or y�v ln v, and on the other, � is small, implying
y2 /v1, or yv1/2. Neglecting the sinh, we get from Eq.
�46�

C1 	
1

2
ln
 va

2D
� , �47�

and the WKB solution is

� 	 eS0
1 +
2D

va
sinh�aS���−1/2

. �48�

We now need to match the WKB solution to the Airy

solution of �=eS*��y−y*��, where �=C2Ai(�y*−y� /
a). First
we find the matching region. Clearly we need the argument
of the Airy function to be large. Thus gives us that y*−y

a. In the lattice limit, this reduces to y*−yv−1/3, while
in the continuum limit, we get y*−y1. Near the turning
point, S0�	S*�+
a

−3/2�y*−y. This is valid as long as
a
a

−3/2�y*−y�1, or y*−y�
a
3 /a2. Thus we can match as

long as 
a�
a
3 /a2, which is uniformly true in the large v

limit. Approximating the Airy solution, we get

� 	 C2eS*��y−y*�Ai„�y* − y�/
a…

	
1

2��

a

1/4�y* − y�−1/4C2eS*��y−y*�e−�2/3���y* − y�/
a�3/2
.

�49�

Approximating the WKB solution, we get

� 	 
1 +
2D

va
sinh„aS0��y�…�−1/2

eS0�y�

	 1 +
2D

va
�sinh�aS*�� + a cosh�aS*���
a

−3�y* − y���−1/2

�eS*−S*��y*−y�−�2/3�
a
−3/2�y* − y�3/2

	 
2D

v
cosh�aS*���
a

−3�y* − y��−1/2

�eS*−S*��y*−y�−�2/3�
a
−3/2�y* − y�3/2

. �50�

Matching these two gives

C2 	
�2�v

D1/3�1/6 cosh1/3�aS*��
eS* �51�

It is easy to verify that this agrees in the a→0 limit with the
direct continuum calculation, Eq. �19�.

FIG. 6. �Color online� Velocity vs � for lattice spacing a=1,
D=r0=1, ln�Ne�=25, from simulation, together with the leading-
order and corrected analytic approximations, as in Fig. 5.

FIG. 7. �Color online� Velocity vs D for lattice spacing a=1,
�=0.1, r0=1, ln�Ne�=25, from simulation, together with the
leading-order and corrected analytic approximations, as in Fig. 5.
Also included is the continuum approximation, Eq. �23�.
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VII. MATCHING TO x�xc

Finally, we have to actually match to the solution for x
�xc. For x�xc, we clearly cannot expand � as we have
done, since the falloff of � is much faster than exp�−S*�x�.
We can understand what happens by considering doing the
expansion of � to one more order. The higher derivative
induces a boundary layer at xc, which serves to insure conti-
nuity of the second derivative, but leaves the lower-order
derivatives untouched. As we expand to higher and higher
order, there are more and more boundary-layer modes, which
we have to match. The correct way to do the matching, then,
is via a Wiener-Hopf �WH� procedure. To do the WH, we
consider our problem in the immediate vicinity of xc. Here,
we can approximate �y by �yc, since as we have seen, yc is
large. Now we have a constant coefficient difference equa-
tion, which we can solve via WH.

Let us do this first for the continuum problem for practice,
since here we know the correct answer. The approximate
equation is

D�� + v�� + �yc��yc − y�� = 0. �52�

Writing �=�L+�R and Fourier transforming, we get

− Dq2��L + �R� + ivq��L + �R� + �yc�L = 0 �53�

or equivalently

�− Dq2 + ivq��R = − �− Dq2 + ivq + �yc��L. �54�

The right-hand operator R�q�=−Dq2+ ivq has two zeros, one
at q=0 and one at q= iv /D, but �R has a pole only at q
=qR= iv /D. The left-hand operator L�q�=−Dq2+ ivq+�yc

has two essentially degenerate zeros, close to q= iv / �2D�,
both of which are represented as poles in �L. Thus we re-
write the equation as follows:

�q − qR��R = −
L�q��q − qR�

R�q�
�L. �55�

Now, the left-hand side of the equation has no zeros or poles
below the line Im q=v /D, and the right-hand side of the
equation has no zero or poles above, so they must both be
equal to a constant C. Thus

�R =
C

q − qR
,

�L = −
CR�q�

L�q��q − qR�
= −

Cq

�q − q+��q − q−�
, �56�

where q± are the two nearly degenerate roots of L�q�,

q± =
iv
2D

± � �57�

with �=�−v2+4D�yc /2D small. Fourier transforming back,
we get

�R = iCe−v�y−yc�/D,

�L = iC
 q+

q+ − q−
eiq+�y−yc� +

q−

q− − q+
eiq−�y−yc�� . �58�

Examining �R, we find that iC=1/Ne. Turning to �L, we
found above that yc	v2 / �4�D�−�0
, so

� 	 �− ��0
/D . �59�

Now, as long as �y−yc���1, we can write

�L 	
e−v�y−yc�/�2D�

Ne

1 −

v
2D

�y − yc�� . �60�

We now have to match this to the Airy function. Putting yc
�v2 / �4D��−�0
−y1, we find that

� 	 Ae−vyc/2De−v�y−yc�/�2D�Ai���0�
 y1 − �y − yc�



�
= Ae−vyc/2De−v�y−yc�/2DAi���0�y1




1 −

y − yc

y1
� . �61�

Comparing the two results we find y1	2D /v, and

Ae−vyc/2D2DAi���0�
v


	
1

Ne
�62�

or

ln Ne 	 −
2

3

v3

�4D��3/2
D

�
�−1/2

+
v3

8D2�
−

v�0


2D
− 1 −

1

2
ln 4�

−
1

4
ln
	



� − ln
2DAi���0�

v

�

=
v3

24D2�
−

v�0

2�D2��1/3

− ln�Ai���0�2e�2�D1/3�1/6v−1/2� . �63�

This can be shown to agree with the direct asymptotic solu-
tion of Eq. �20�.

Now we do the same for the lattice problem. Again, after
setting �y=�yc, the equation has the form

R�q��R = − L�q��L, �64�

where

R�q� = −
4D

a2 sin2 aq

2
+ ivq ,

L�q� = R�q� + �yc. �65�

R�q� has two pure imaginary roots, one at q=0 and the other
with a positive imaginary part �R. Since we cannot allow �R
to become negative, the dominant solution for large x must
be controlled by this positive imaginary root, leading to a
pure exponential decay. Only this root and the complex roots
which decay faster �Im q��R� are then permissible. As in
the continuum, since yc is close to y*, L�q� has a pair of
almost degenerate roots q± with small real parts and a posi-
tive imaginary part smaller than �R. To match to the Airy
solution, this must be the dominant contribution for large
negative y−yc, so the only acceptable roots are those with
Im q� Im q±. We therefore decompose R�q� and L�q� into
two factors, one with its zeros below i�R,which we label by
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a “B” superscript, and the other with its zeros above �or
equal�, which we label by “U.” Formally,

R�q� = RU�q�RB�q� ,

L�q� = LU�q�LB�q� , �66�

where

RU�q� = �
i

1 −

q

qR,i
U � ,

RB�q� = ivq�
i

1 −

q

qR,i
B � ,

LU�q� = �yc�
i

1 −

q

qL,i
U � ,

LB�q� = 
1 −
q

q+
�
1 −

q

q−
��

i

1 + i

q

qL,i
B � . �67�

We have chosen to explicitly break out the factors relating to
q± in LB since they will play an essential role in the follow-
ing, and the factor ivq in RB so that the correct behavior at
q=0 is maintained. Then, via the standard Wiener-Hopf ar-
gument,

�R�q� = C
LU

RU ,

�L�q� = − C
RB

LB . �68�

It is easiest to proceed if we regularize the problem by ef-
fectively discretizing time, replacing the ivq term in the op-
erators L, R by ivnt /a sin�qa /nt� where nt is some large in-
teger. Then, the operators become polynomials of order 2nt
in the variable eiqa/nt. Further study reveals that RU then has
nt−1 zeros, RB has nt+1, LU has nt−2 zeros, and LB has nt
+2. Thus �L behaves as q−1 for large q, and so

�L�yc� = − i lim
q→�

q�L�q� = − Cvq+q− � qL,i
B

qR,i
B �69�

so that

C = −
1

Nevq+q−
� qR,i

B

qL,i
B �70�

giving

�L�q� =
iq

Ne�q − q+��q − q−��i

q − qR,i
B

q − qL,i
B . �71�

If y is not too close to yc, only the two dominant modes,
which we have labeled q±=−iS*�±� survive, and we get

�L�y� 	
1

Ne
�

i

− iS*� − qR,i
B

− iS*� − qL,i
B eS*��y−yc�1 + �

j

 − S*�

− S*� + iqR,j
B

−
− S*�

− S*� + iqL,j
B � + S*��y − yc�� . �72�

This is seen to reproduce the continuum results above when
a→0. Now we must match Eq. �72� to our Airy function
solution to Eq. �37�. Actually, to the order we are working,
we must take into consideration the first lattice correction to
the Airy equation, namely

Da sinh�aS*��
3

�� + D cosh�aS*���� + ��y − y*�� = 0.

�73�

The �first order� approximate solution to this is

��y� 	 C2
1 +
a tanh�aS*��

12
a
3 �y − y*�2�Ai

�
−
y − y*


a
+

a tanh�aS*��
6
a

� . �74�

Substituting yc=y*−�0
a−y1, with y1 /
a�1, we find

��y� 	 C2eS*��yc−y*�eS*��y−yc�Ai���0�

a

�
y1 +
a tanh�aS*��

6
− �y − yc�� . �75�

Thus gives us

y1 	 −
a tanh�aS*��

6
+

1

− S*�
+ �

j

 1

− S*� + iqR,j
B −

1

− S*� + iqL,j
B � .

�76�

A graph of y1 as a function of v is presented in Fig. 8,
together with the continuum result. We see that whereas y1

FIG. 8. �Color online� Large v analytic approximations for y1 vs
velocity for �=0.1, r0=1, D=1, both for lattice spacing a=1
�solid�, and for the continuum limit �dashed�, together with results
from simulation �circles�.
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falls to zero with v in the continuum, due to the lattice cor-
rection to the Airy equation, the lattice y1 approaches a con-
stant for large v. In fact, at large v, all the q’s can be calcu-
lated analytically, and the sum performed. This calculation
shows that to leading order, both the sum over the right and
left modes approaches 1/2, with the difference vanishing as
v→�. The lattice y1 is thus dominated by the lattice correc-
tion to the Airy equation, which approaches the constant a /6
for large v. Included in this figure is a comparison between
analytical and numerical results. We see that as expected the
analytic result approaches the numerical results as v in-
creases, being quite accurate everywhere.

The numerical results presented in this graph, in contrast
to those presented throughout the rest of this paper, were not
obtained through direct numerical simulation of the time-
dependent equations, due to the high accuracy required to
perform the comparison with the theory. Our direct numeri-
cal simulations were performed via a straightforward Euler
simulation, which is only first-order accurate in the time step.
Extremely small time steps would have been required to ob-
tain the requisite accuracy. Instead, we solved the linearized
steady-state equation directly. As opposed to v�Ne�, which
requires a full nonlinear solution, y1�v� is determined solely
by the linearized equation. The procedure we employed was
as follows: The solution past the cutoff was written as a
linear superposition of the allowed modes, corresponding to
the roots qR

U. The solution to the left of some conveniently
chosen y� was written as a linear superposition of modes,
with the reaction rate set at the constant value r�y��=r�yc�
−��yc−y��. The steady-state equations between y� and yc

were written as a banded matrix, acting on the three sets of
unknowns: the coefficients of the pre-y� modes; the values of
the field between y� and yc; and the coefficients of the post-
yc modes. This matrix depends on the two parameters v and
r�yc�. Now the pre-y� modes include two real modes, corre-
sponding to the two solutions of the quadratic equation for
S�. In order to match the Airy function behavior, the faster of
these two modes must not be present. This is an eigenvalue
condition of r�yc� for a given v. From r�yc� we can back out
y1, as presented in the figure. This procedure converges qua-
dratically in the discretization �y. The convergence with re-
spect to y� is exponentially rapid, and presented no problem.
A comparison of the answers obtained in this manner with
that obtained by direct numerical simulation, at low values of
v for which the latter calculation was feasible, verified the
validity of this alternate approach. This variant method also
sheds an interesting light on the selection problem inherent
in the linearized steady-state equation.

All that remains is to put everything together and con-
struct the full approximation for the velocity as a function of
the cutoff Ne. As we have seen, in the matching region, the
WH �L has the same functional form as the Airy solution,
once y1 is picked appropriately as described above, the two
solutions differing only in normalization. Setting the normal-
ization factors equal then fixes 1/Ne in terms of our previ-
ously calculated C2 �see Eq. �51��. Doing this gives

ln Ne 	 − S* + S*���0
a + y1� − ln��2�v/�
a
−1�

− ln
 Ai���0�
�− S*��
a

� − iS*� − qL,i
B

− iS*� − qR,i
B � . �77�

In Fig. 9 we present the ratio of Ne as predicted by this
formula to the results of numerical simulation. We see that
the ratio appears to approach unity as v increases, as it
should. Together with this is shown the ratio of Ne from the
lower order formula, Eq. �39�. This formula, while it does
better at small v, is seen to diverge from the exact answer
with increasing v.

VIII. CONCLUSIONS

In summary, we have presented an analytical study of the
velocity of Fisher fronts in the presence of a gradient. This
study exploits the fact that the velocity diverges as the local
density of reactants increases. This divergence is one of the
signposts of the extreme sensitivity to fluctuations of this
class of models. One of the most surprising consequences of
this sensitivity is the different order of the divergence in the
continuum versus the lattice model; whereas the velocity of
the front in the continuum limit diverges as ln1/3�N�, on the
lattice, the growth of the velocity with ln N is stronger. While
for truly astronomically large N, the velocity diverges as
ln N, for more physically sensible N’s, 104�N�1040, a phe-
nomenological formula has the velocity effectively diverging
as �ln N. The relative insensitivity to the details of the
matching to the post-cutoff regime is another characteristic
feature of this problem. It is clear, for example, that the lead-
ing order results are completely independent of the post-
cutoff dynamics. Even the next order, which formally does
depend on matching to the solution past xc, is in fact only
very weakly modified by the “R” modes arising from this
region. This lack of strong dependence is no doubt a major
part of the reason that the phenomenological cutoff theory
works as well as it does in describing the stochastic model.

FIG. 9. �Color online� Ratio of Ne as predicted by Eq. �77� to
the exact Ne from numerical simulation for D=1, �=0.1, a=1. Also
shown is the ratio of Ne, as predicted from the lower-order result,
Eq. �39�, to the exact Ne.
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Obviously, the cutoff MFE approach cannot capture any
of the truly stochastic features of the original Markov model.
Thus the next step in our overall program for understanding
fronts in gradients must involve adding back in the residual
effects of finite particle number fluctuations to the cutoff
theory. Exactly how to do this is already unclear in the sim-
pler case of the Fisher equation front, where it has proven
difficult to come up with a simple explanation for the nu-
merically determined front diffusion constant �22,23�. The
first question to be answered for the gradient case is whether
the front can be described as simply diffusing �albeit with an

anomalous diffusion constant� or whether the fluctuation ef-
fects perhaps lead to even stronger stochasticity. We hope to
report on this issue in a future publication.
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